Mechanism of elongation factor (EF)-Ts-catalyzed nucleotide exchange in EF-Tu. Contribution of contacts at the guanine base.

نویسندگان

  • Hans-Joachim Wieden
  • Kirill Gromadski
  • Dmytro Rodnin
  • Marina V Rodnina
چکیده

Nucleotide exchange in elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). Similarly to other GTP-binding proteins, the structural changes in the P loop and the Mg(2+) binding site are known to be important for nucleotide release from EF-Tu. In the present paper, we determine the contribution of the contacts between helix D of EF-Tu at the base side of the nucleotide and the N-terminal domain of EF-Ts to the catalysis. The rate constants of the multistep reaction between Escherichia coli EF-Tu, EF-Ts, and GDP were determined by stopped-flow kinetic analysis monitoring the fluorescence of either Trp-184 in EF-Tu or mant-GDP. Mutational analysis shows that contacts between helix D of EF-Tu and the N-terminal domain of EF-Ts are important for both complex formation and the acceleration of GDP dissociation. The kinetic results suggest that the initial contact of EF-Ts with helix D of EF-Tu weakens binding interactions around the guanine base, whereas contacts of EF-Ts with the phosphate binding side that promotes the release of the phosphate moiety of GDP appear to take place later. This "base-side-first" mechanism of guanine nucleotide release resembles that found for Ran x RCC1 and differs from mechanisms described for other GTPase x GEF complexes where interactions at the phosphate side of the nucleotide are released first.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange.

Elongation factor Ts (EF-Ts) is the guanine nucleotide exchange factor for elongation factor Tu (EF-Tu). An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu. In this study, the contribution of His-118 to nucleotide release was studied by pre-steady state kin...

متن کامل

Mitochondrial translation: elongation factor tu is essential in fission yeast and depends on an exchange factor conserved in humans but not in budding yeast.

The translation elongation factor EF-Tu is a GTPase that delivers amino-acylated tRNAs to the ribosome during the elongation step of translation. EF-Tu/GDP is recycled by the guanine nucleotide exchange factor EF-Ts. Whereas EF-Ts is lacking in S. cerevisiae, both translation factors are found in S. pombe and H. sapiens mitochondria, consistent with the known similarity between fission yeast an...

متن کامل

The identification of a domain in Escherichia coli elongation factor Tu that interacts with elongation factor Ts.

A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-T...

متن کامل

Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.

Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differ...

متن کامل

Interaction of the isolated domain II/III of Thermus thermophilus elongation factor Tu with the nucleotide exchange factor EF-Ts.

The middle and C-terminal domain (domain II/III) of elongation factor Tu from Thermus thermophilus lacking the GTP/GDP binding domain have been prepared by treating nucleotide-free protein with Staphylococcus aureus V8 protease. The isolated domain II/III of EF-Tu has a compact structure and high resistance against tryptic treatment and thermal denaturation. As demonstrated by circular dichrois...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 8  شماره 

صفحات  -

تاریخ انتشار 2002